Satisfacción ambiental de la vivienda. Interacción y entorno / Environmental satisfaction of housing. Interaction and environment

  • Carlos Alberto Fuentes Pérez Universidad Autónoma de Tamaulipas

Abstract

El presente trabajo evalúa las oscilaciones de temperatura y humedad relativa del estudio de caso, es decir, la vivienda común; por lo tanto, el objetivo de la presente investigación es determinar la satisfacción ambiental. Para ello se recurre a una investigación experimental aplicada, apoyada en varios tipos de estudio tales como el descriptivo, el bibliográfico y de campo, y cuya finalidad más importante es determinar la calidad ambiental al interior de la vivienda en Tampico, México.

Downloads

Download data is not yet available.

References

Ambrosini, Dario; Galli, Giorgio; Mancini, Biagio; Nardi, Iole; Sfarra, Stefano (2014). “Evaluating Mitigation Effects of Urban Heat Islands in a Historical Small Center with the ENVI-Met (R) Climate Modelâ€. Sustaintability. Volumen: 6, pp. 7013-7029.

Berger, Tania; Amann, Christof; Formayer, Herbert; Korjenic, Azra; Pospichal, Bernhard; Neururer, Christoph; Smutny, Roman (2014). “Impacts of urban location and climate change upon energy demand of office buildings in Vienna, Austriaâ€. Building and Environment. Volume: 81, pp. 258-269.

CONAGUA (2015). Climatología de Tampico, México. Comisión Nacional del Agua. Servicio Meteorológico Nacional. Recuperado de: http://smn.cna.gob.mx.

Coseo, Paul; Larsen, Larissa (2014). How factors of land use/land cover, building configuration, and adjacent heat sources and sinks explain Urban Heat Islands in Chicago. Landscape and Urban Planning. Volumen: 125, pp. 117-129.

Chávez Del Valle, Francisco Javier (2002). Zona variable de confort térmico. Tesis Doctoral. Escuela Técnica Superior de Arquitectura de Barcelona. Universitat Politécnica de Catalunya. Barcelona, España.

Dimoudi, A; Kantzioura, A; Zoras, S; Pallas, C; Kosmopoulos, P. (2013). “Investigation of urban microclimate parameters in an urban centerâ€. Energy and Buildings. Volumen: 64, pp. 1-9.

Feng, Huihui; Zhao, Xiaofeng; Chen, Feng; Wu, Lichun (2014). “Using land use change trajectories to quantify the effects of urbanization on urban heat islandâ€. Advances in Space Research. Volumen: 53, pp. 463-473.

Fuentes Pérez, Carlos Alberto (2011). Evaluación del comportamiento de la vivienda tradicional y la vivienda común en Tampico, México. Tesis Doctoral. Programa de Doctorado con Énfasis en Vivienda de la Facultad de Arquitectura, Diseño y Urbanismo. Universidad Autónoma de Tamaulipas. Tampico, Tamps., México.

Fuentes Pérez, Carlos Alberto (2014). Adaptabilidad higrotérmica de la vivienda tradicional en Tampico, México. Redalyc.org. Volumen: VIII, pp. 77-97.

Gago, EJ; Roldán, J; Pacheco-Torres, R; Ordoñez, J. (2013). The city and urban heat islands: A review of strategies to mitigate adverse effects. Renewable & Sustainable Energy Reviews. Volumen: 25, pp. 749-758.

Goldberg, Valeri; Kurbjuhn, Cornelia; Bernhofer, Christian (2013). How relevant is urban planning for the thermal comfort of pedestrians? Numerical case studies in two districts of the City of Dresden (Saxony/Germany). Meteorologische Zeitschrift. Volumen: 22, pp. 739-751.

Hedquist, Brent C.; Brazel, Anthony J. (2014). Seasonal variability of temperatures and outdoor human comfort in Phoenix, Arizona, USA. Building and Environment. Volumen: 72, pp. 377-388.

Humphreys, M. A. (1995). “Fields studies of thermal comfort compared and appliedâ€, en symposium of physiological requirements of the microclimate. Praga.

Humphreys, M. A. and Nicol, F. (2001). “The validity of ISO-PMV for predicting comfort votes in every-day thermal environmentsâ€. Proceedings of Moving Thermal Comfort Standard s Into the 21st Century. Windsor-UK.

Ho, Hung Chak; Knudby, Anders; Sirovyak, Paul; Xu, Yongming; Hodul, Matus; Henderson, Sarah B. (2014). “Mapping maximum urban air temperature on hot summer daysâ€. Remote Sensing of Environment. Volumen: 154, pp. 38-45.

ISO, International Organization for Standardization (2005). ISO 7730:2005 (E) Ergonomics of the thermal environment-analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Ginebra: Edición de autor.

Kolaitis, Dionysios I. et al. (2013). “Comparative assessment of internal and external thermal insulation systems for energy efficient retrofitting of residential buildingsâ€. Energy and Buildings. Volumen: 64, pp. 123-131.

Krüeger, E. L.; Minella, F. O.; Matzarakis, A. (2014). Comparison of different methods of estimating the mean radiant temperature in outdoor thermal comfort studies. International Journal of B Ometeorology. Volumen: 58, pp. 1727-1737.

Lee, Sungwon; Lee, Bumsoo (2014). “The influence of urban form on GHG emissions in the US household sectorâ€. Energy Policy. Volumen: 68, pp. 534-549.

Li, Yanling; Babcock, Roger W., Jr. (2014). Green roofs against pollution and climate change. A review. Agronomy for Sustainable Development. Volumen: 34, pp. 695-705.

Nicol, F.; Humphreys, M. A. (2002). “The Validity of ISO-PMV for Predicting Comfort Votes in Everyday Thermal Environmentsâ€. Energy and Buildings, Lausanne. Volumen: 34, pp. 667-684.

Olgyay, Víctor (2004). Arquitectura y clima. Manual de diseño bioclimático para arquitectos y urbanistas. Editorial Gustavo Gili, S.A. Tercera tirada. Barcelona, España.

Pathirana, Assela; Denekew, Hailu B.; Veerbeek, William; Zevenbergen, Chris; Banda, Allan T. (2014). Impact of urban growth-driven land use change on microclimate and extreme precipitation - A sensitivity study. Atmospheric Research. Volumen: 138, pp. 59-72.

Perini, Katia; Magliocco, Adriano (2014). “Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfortâ€. Urban Forestry & Urban Greening. Volumen: 13, pp. 495-506.

Roriz, Mauricio (2003). Flutuações horárias dos limites de conforto térmico: Urna hipótese de modelo adaptativo. ENCAC-COTEDI, VII Encontro Nacional de Conforto no Ambiente Construído Curitiba - PR, Brasil.

Runnalls, KE; Oke, TR. (2006). “A technique to detect microclimatic inhomogeneities in historical records of screen-level air temperatureâ€. Journal of Climate. Volumen: 19, pp. 959-978.

Shahrestani, Mehdi; Yao, Runming; Luo, Zhiwen; Turkbeyler, Erdal; Davies, Hywel (2015). A field study of urban microclimates in London. Renewable Energy. Volumen: 73, pp. 3-9.

Stewart, Iain D.; Oke, T. R.; Krayenhoff, E. Scott (2014). “Evaluation of the 'local climate zone' scheme using temperature observations and model simulationsâ€. International Journal of Climatology. Volumen: 34, pp. 1062-1080.

Taylor, J.; Davies, M; Mavrogianni, A; Chalabi, Z; Biddulph, P; Oikonomou, E; Das, P; Jones, B. (2014). The relative importance of input weather data for indoor overheating risk assessment in dwellings. Building and Environment. Volumen: 76, pp. 81-91.

Wong, Nyuk Hien; Jusuf, Steve Kardinal; Tan, Chun Liang (2011). “Integrated urban microclimate assessment method as a sustainable urban development and urban design toolâ€. Landscape and Urban Planning. Volumen: 100, pp. 386-389.

Published
2016-01-13
How to Cite
Fuentes Pérez, C. A. (2016). Satisfacción ambiental de la vivienda. Interacción y entorno / Environmental satisfaction of housing. Interaction and environment. RICSH Iberoamerican Journal of Social and Humanistic Sciences, 4(8), 144 - 160. Retrieved from https://mail.ricsh.org.mx/index.php/RICSH/article/view/43
Section
Research Articles